Answer:
C. Impulse = F*t=(m*a)*t= m*(a*t) = m*Dv= D(Momentum) (“D” here’s mean Delta so change in)
Explanation:
In fact, the impulse is equal to the change in momentum of an object.
Impulse is defined as the product between the force (F) and the time (t):
however, the force is defined as the product between mass (m) and acceleration (a):
But the product a (acceleration) times t (time) is equal to the change in velocity of the object:
And this is exactly the definition of change in momentum:
Answer:
110 m
Explanation:
Draw a free body diagram of the car. The car has three forces acting on it: normal force up, weight down, and friction to the left.
Sum of the forces in the y direction:
∑F = ma
N − mg = 0
N = mg
Sum of the forces in the x direction:
∑F = ma
-F = ma
-Nμ = ma
Substitute:
-mgμ = ma
-gμ = a
Given μ = 0.40:
a = -(9.8 m/s²) (0.40)
a = -3.92 m/s²
Given that v₀ = 30 m/s and v = 0 m/s:
v² = v₀² + 2aΔx
(0 m/s)² = (30 m/s)² + 2 (-3.9s m/s²) Δx
Δx ≈ 110 m
I would chose as the answer A I think that it uses so in the correctly.
Answer: 1333 m
the length of runway it will need is S = (m)
Explanation:
<h2>
</h2><h3>kinetic energy is given as</h3>
KE = (0.5) m v²
given that : v = speed of the bottle in each case = 4 m/s when m = 0.125 kg
KE = (0.5) m v² = (0.5) (0.125) (4)² = 1 J
when m = 0.250 kg KE = (0.5) m v² = (0.5) (0.250) (4)² = 2 J
when m = 0.375 kg KE = (0.5) m v² = (0.5) (0.375) (4)² = 3 J
when m = 0.0.500 kg KE = (0.5) m v² = (0.5) (0.500) (4)² = 4 J