Answer:
The correct answer is
Explanation:
The formula for the electron drift speed is given as follows,
where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is . Converting this number to m³ using very elementary unit conversion we get . If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,
if we convert the area from mm³ to m³ we get .So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,
which is our final answer.
Answer:
A, total.
<em>The </em><em>total</em><em> energy in a mechanical system is determined by adding the potential and kinetic enters together.</em>
<em />
<u><em>i hope this helped at all.</em></u>
<em />
B is the awser
good luck and hope it helps
Answer:
B= 3.33 m T
Explanation:
Given that
Speed ,C= 6 x 10⁶ m/s
d= 1 cm = 0.01 m
V= 200 V
The electric field E given as
V= E .d
E=Electric field
d=Distance
V=Voltage
200 = 0.01 x E
E=20000 V/m
The relationship between magnetic and electric field given as
E= C x B
20000 = 6 x 10⁶ x B
B =3333.333 x 10⁻⁶ T
B= 3.33 x 10⁻³ T
B= 3.33 m T
Therefore the magnetic filed will be 3.33 m T.
The book's vertical position in the air is
where . It reaches the ground when , at a time such that
So it takes the book 4 seconds to reach the bottom. The given initial velocity is irrelevant since it only has a horizontal component; vertically, the book is starting from rest.