Answer:
Option D. A law describing the behavior of condensed gases
Explanation:
Ideal gas law describes the behavior of gas molecules when the pressure is applied on it.
Ideal gas law states that the product of the volume and the pressure of molecule of an ideal gas is equal to the product of the temperature of the gas and the universal gas constant.
The equation of ideal gas law is given below.
PV = nRT
I think this what you're looking for http://www.webmd.com/oral-health/salivary-glands
Above question is incomplete. Complete question is attached below
........................................................................................................................
Solution:
Reduction potential of metal ions are provided below. Higher the value to reduction potential, greater is the tendency of metal to remain in reduced state.
In present case,
reduction potential of Au is maximum, hence it is least prone to undergo oxidation. Hence, it is
least reactive.
On other hand,
reduction potential of Na is minimum, hence it is most prone to undergo oxidation. Hence, it is
most reactive.
Answer:
D. -1882J
Explanation:
We can solve the energy released in a chemical reaction in an aqueous medium using the equation:
Q = -m*C*ΔT
<em>Where Q is energy (In J),</em>
<em>m is mass of water (45.00g)</em>
<em>C is specific heat of water (4.184J/g°C)</em>
<em>And ΔT is change in temperature (25.00°C - 15.00°C = 10.00°C)</em>
<em />
Replacing:
Q = -45.00*4.184J/g°C*10.00°C
Q = -1882J
Right answer is:
<h3>D. -1882J</h3>
<em />
50 grams salt
Volume of 50 Grams of Salt
50 Grams of Salt =
2.78 Tablespoons
8.33 Teaspoons
0.17 U.S. Cups
0.14 Imperial Cups