As the air molecules move through the valve they have friction as they hit the walls, and its this friction that causes it to heat up.
Explanation:
Sorry I tried but I do not know the answer but maybe someone else's know and can tell you the answer
Answer:
41.9 g
Explanation:
We can calculate the heat released by the water and the heat absorbed by the steel rod using the following expression.
Q = c × m × ΔT
where,
c: specific heat capacity
m: mass
ΔT: change in temperature
If we consider the density of water is 1.00 g/mol, the mass of water is 125 g.
According to the law of conservation of energy, the sum of the heat released by the water (Qw) and the heat absorbed by the steel (Qs) is zero.
Qw + Qs = 0
Qw = -Qs
cw × mw × ΔTw = -cs × ms × ΔTs
(4.18 J/g.°C) × 125 g × (21.30°C-22.00°C) = -(0.452J/g.°C) × ms × (21.30°C-2.00°C)
ms = 41.9 g
The correct answer is C, as if you do not understand something, it's always best to ask for help, especially when performing a sensitive procedure.
Answer:
I think its 1.40M Na^+ we convert to Na3PO4 which means we need 1.40M x (1 mole Na3PO4/3 mol Na^+) = 1.40 x 1/3 = 0.467 M Na3PO4.
Explanation: