Phosphorous has three lone electrons that need pairing. Similar to how carbon has 4 lone electrons, and forms CH4
Missing question: volume of <span>solution on the left is 10 mL.
V</span>₁(solution) = 10 Ml.
c₁(solution) = 0.2 M.<span>
V</span>₂(solution)
= ?.<span>
c</span>₂(solution)
= 0.04 M.<span>
c</span>₁ -
original concentration of the solution, before it gets diluted.<span>
c</span>₂
- final concentration of the solution, after dilution.<span>
V</span>₁
- <span>volume to
be diluted.
V</span>₂ - <span>final volume after
dilution.
c</span>₁ · V₁ = c₂ · V₂<span>.
</span>10 mL · 0.2 M = 0.04 M · V₂.
V₂(solution) = 10 mL · 0.2 M ÷ 0.04 M.
V₂(solution) = 50 mL.<span>
</span>
Answer:
This is due to more hydrogen bonding in ethylene glycol than it is in isopropyl alcohol
Explanation:
The boiling point of isopropyl alcohol is 82.4 °C it contains only a single OH group, hence intermolecular hydrogen bonding is solely responsible for it's boiling point, whereas Ethylene glycol (CH2OHCH2OH) contains 2-OH group and both intermolecular and intramolecular hydrogen bonding are responsible for the higher boiling point of ethylene glycol at 198 °C.
Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.
Answer:
Newton's First Law states that an object in motion will stay in motion, an object at rest will stay at rest, at a constant velocity, unless an unbalanced force acts upon it.
Newtons First law of motion has to do with seat belts because think about it, what happens when we don't wear a seat belt and our vehicle comes to a quick stop. What happens to you? You move forward and stay in motion until an unbalanced force acts upon you. Now what is an unbalanced force? An unbalanced force is one that is not opposed by an equal and opposite force operating directly against the force intended to cause a change in the object's state of motion or rest. So, when you come to a stop, you wouldn't stop motion unless a force is caused to change your motion and put you at rest. If you were wearing a seat belt, the seat belt would act as the unbalanced force, it would stop you from being in motion.