Answer:
1) Ethanol
Explanation:
If we will have <u>interactions</u> we will need more <u>energy</u> to break them in order to go from liquid to gas. If we need more <u>energy</u>, therefore, the <u>temperature will be higher</u>.
In this case, we can discard the <u>propanone</u> because this molecule don't have the ability to form <u>hydrogen bonds</u>. (Let's remember that to have hydrogen bonds we need to have a hydrogen bond to a <u>heteroatom</u>, O, N, P or S).
Then we have to analyze the hydrogen bonds formed in the other molecules. For ethanol, we will have only <u>1 hydrogen bond</u>. For water and ethanoic acid, we will have <u>2 hydrogen bonds</u>, therefore, we can discard the ethanol.
For ethanoic acid, we have 2 <u>intramolecular hydrogen bonds</u>. For water we have 2 <u>intermolecular hydrogen bonds</u>, therefore, the strongest interaction will be in the <u>ethanoic acid</u>.
The<u> closer boiling point</u> to the 75ºC is the <u>ethanol</u> (boiling point of 78.8 ºC) therefore these molecules would have <u>enough energy</u> to <u>break</u> the hydrogen bonds and to past from<u> liquid to gas</u>.
H2SO4 is referred to as a strong acid and is denoted as option A.
<h3>What is an Acid?</h3>
This refers to any substance which tastes sour when in water and changes the color of blue litmus paper to red. It is usually very corrosive and are used in industries for different functions.
H2SO4 is referred to as a strong acid because it dissociates completely in its aqueous solution or water.
Read more about Acid here brainly.com/question/25148363
#SPJ1
Answer:
Moles of silver iodide produced = 1.4 mol
Explanation:
Given data:
Mass of calcium iodide = 205 g
Moles of silver iodide produced = ?
Solution:
Chemical equation:
CaI₂ + 2AgNO₃ → 2AgI + Ca(NO₃)₂
Number of moles calcium iodide:
Number of moles = mass/ molar mass
Number of moles = 205 g/ 293.887 g/mol
Number of moles = 0.7 mol
Now we will compare the moles of calcium iodide with silver iodide.
CaI₂ : AgI
1 : 2
0.7 : 2×0.7 = 1.4
Thus 1.4 moles of silver iodide will be formed from 205 g of calcium iodide.
First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>