Solid- particles are packed tightly together so they don’t move much
Liquid- particles are still close together but move freely
Gas- particles are neither close together nor fixed in place
I will list them from alkaline with the lowest boiling point and alkaline with the highest.
1. C2H6
2. C9H20
3. C11H24
4. C16H34
5. C20H42
6. C32H66
7. C150H302
I have taken a quiz similar to this before and can assure you this is correct and is primarily because of the number of Carbons and Hydrogens within this. More Carbons and Hydrogens causes Boiling Points to increase because of stronger bonds.
Answer:
Nitrogen is limiting reactant while hydrogen is in excess.
Explanation:
Given data:
Mass of N₂ = 25 g
Mass of H₂ = 25 g
Mass of ammonia formed = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of Nitrogen:
Number of moles = mass/ molar mass
Number of moles = 25 g/ 28 g/mol
Number of moles = 0.89 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 25 g/ 2 g/mol
Number of moles = 12.5 mol
Now we will compare the moles of both reactant with ammonia.
H₂ ; NH₃
3 : 2
12.5 : 2/3×12.5 = 8.3
N₂ ; NH₃
1 : 2
0.89 : 2×0.89 = 1.78
The number of moles of ammonia produced by nitrogen are less thus nitrogen is limiting reactant while hydrogen is in excess.
The antacid is alkaline so it neutralizes the excess acids in your stomach.
Applications of iron oxide nanoparticles include terabit magnetic storage devices, catalysis, sensors, superparamagnetic relaxometry (SPMR), and high-sensitivity biomolecular magnetic resonance imaging (MRI) for medical diagnosis and therapeutics.