1) One piece of science equipment that you might not have been introduced to is the graduated cylinder. measure volume of a liquid.
2) Although you need to be careful when using a Bunsen burner, I think it is one of the most interesting lab tools to use. A Bunsen burner is a heat source used to raise the temperature.
#6).
Every 1,000 mL makes 1 L
How many 1,000mL are there in 2,800 mL ?
That's division.
(2,800 mL) / (1,000 mL) = <em>2.8 L</em>
#7).
The 'perimeter' means the 'distance all the way around'.
You have to know that both sides of a rectangle are the same length,
and also the top and bottom are the same length.
So the perimeter of this rectangle is
(2 yd) + (4.5 yd) + (2.yd) + (4.5 yd) = 13 yd .
Oops. The problem wants to know the perimeter in feet.
So you have to know that each yard is the same as 3 feet.
In order to find the number of feet in 13 yards, you have to
take 3 feet 13 <em><u>times</u></em> .
(3 feet) times (13) = <em>39 feet .</em>
#8).
For this one, you have to know that every 36 inches makes 1 yard.
How many 36 inches are there in 48 inches ?
That's division.
(48 inches) / (36inches) = <em>1 and 1/2 yards</em> .
#9).
For this problem, you have to know how to handle a mixed number,
and you also have to know that there are 16 ounces in 1 pound.
Add up the fruit:
(3-1/2 pounds) + (4 pounds) + 2 pounds) = <em><u>9-1/2 pounds</u></em>
Now, remember that each pound is the same as 16 ounces. So if you
want to find the number of ounces in 9-1/2 pounds, you have to take
16 ounces 9-1/2 times .
(16 ounces) times (9-1/2) = <em>152 ounces</em>.
___________________________________
#10).
This one is just adding up some numbers. But after you finish doing that, you have to know that 1,000 meters is called '1 kilometer' .
Add up the distances that Omar ran:
(1,000 meters) + (1,625 meters) + (1,500 meters) = <em><u>4,125 meters</u></em>
The problem wants to know how many kilometers this is, so you have to figure out how many '1,000 meters' fit into 4,125 meters.
That's division.
(4,125 meters) / (1,000 meters) = <em>4.125 kilometers</em>
Answer:
81°C.
Explanation:
To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released from water (Q = - 1200 J).
m is the mass of the water (m = 20.0 g).
c is the specific heat capacity of water (c of water = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = final T - 95.0°C).
∵ Q = m.c.ΔT
∴ (- 1200 J) = (20.0 g)(4.186 J/g.°C)(final T - 95.0°C ).
(- 1200 J) = 83.72 final T - 7953.
∴ final T = (- 1200 J + 7953)/83.72 = 80.67°C ≅ 81.0°C.
<em>So, the right choice is: 81°C.</em>
Answer:
not 100% sure but I think it's unbalanced chemical