It is 0.720 meters cause if the manufacturers of liters contain 2.27 inches it would make a deeply filled of 0.660
Answer:
Approximately
.
Explanation:
Start by finding the concentration of
at equilibrium. The solubility equilibrium for
.
The ratio between the coefficient of
and that of
is
. For
Let the increase in
concentration be
. The increase in
concentration would be
. Note, that because of the
of
, the concentration of
- The concentration of
would be
. - The concentration of
would be
.
Apply the solubility product expression (again, note that in the equilibrium, the coefficient of
is two) to obtain:
.
Note, that the solubility product of
,
is considerably small. Therefore, at equilibrium, the concentration of
Apply this approximation to simplify
:
.
.
Calculate solubility (in grams per liter solution) from the concentration. The concentration of
is approximately
, meaning that there are approximately
of
.
As a result, the maximum solubility of
in this solution would be approximately
.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
<h3>What is energy?</h3>
Energy is the ability to do work.
The primary source of energy on the earth is the sun.
The energy from the sun is used by producers to produce food on which other organisms depend on.
The energy from the sun gets to the humpback whale through producers such as plankton.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
Learn more about energy flow at: brainly.com/question/21786633
Answer:
96.09 g/mol
Explanation:
You just need to first get the atomic weights of the elements involved. You can easily get these from your periodic table.
If you are going to do this properly, please use the weight with at least two decimal places for accuracy (e.g. 15.99 g/mol).
Also, please take note that I will be using the unit g/mol for all the weights. Thus,
Step 1
N = 14.01 g/mol
H = 1.008 g/mol
O = 16.00 g/mol
C = 12.01 g/mol
Since your compound is
(
N
H
4
)
2
C
O
3
, you need to multiply the atomic weights by their subscripts. Therefore,
Step 2
N = 14.01 g/mol × 2 =
28.02 g/mol
H = 1.008 g/mol × (4×2) =
8.064 g/mol
O = 16.00 g/mol × 3 =
48.00 g/mol
C = 12.01 g/mol × 1 =
12.00 g/mol
To get the mass of the substance, we need to add all the weights from Step 2.
Step 3
molar mass of
(
NH
4
)
2
CO
3
=
(28.02 + 8.064 + 48.00 + 12.01) g/mol
=
96.09 g/mol
this is a google search and a example i hope is helps to solve