Answer:
frequency or wavelength
Explanation:
this is why the electromagnetic spectrum has a decreasing wavelength and increasing frequency
Answer:
Wt = 26.84 [N]
Explanation:
In order to solve this problem we must use the definition of work in physics. Which tells us that this is equal to the product of force by distance.
In this case, we must sum the works of the force applied by the box and the friction force that also acts on the box.
The friction force is defined as the product of the normal force by the coefficient of friction.
f = N*μ
where:
N = normal force = m*g [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
f = friction force [N]
μ = friction coefficient = 0.21
f = 72*9.81*0.21
f = 148.32 [N]
Now the total work:
Wt = WF - Wf
where:
Wt = total work [J] (units of Joules)
WF = work by the pushing force [J]
Wf = work done by the friction force [J]
Wt = (160*2.3) - (148.32*2.3)
Wt = 26.84 [N]
Note: The friction force exerts a negative work, because this force is acting in opposite direction to the movement, therefore the negative sign.
Answer:
There are several options that the teacher can use to incorporate the concept into students' understanding.
Explanation:
1. The students can draw all the plants that they know.
2. Children can be asked to bring the flowers to school so that they can identify the plants themselves.
3. The children can plat the flowers in makeshift pots and then take the best plants and transplant them in the garden or elsewhere.
4. The children can take occasional trips and observe and record any changes to the plants.
4. The teacher can ask the students to draw the flowers and emphasize on the productive parts like the stamens, leaves, pistils, stems.
Answer:
t = 2 v₀ / g
Explanation:
For this projectile launch exercise we use the displacement equations
x = vox t
y = y₀ +
t - ½ g t²
As it is launched horizontally the vertical velocity is zero and the point of origin of the coordinate system is here, so y₀ is zero.
x = v₀ t
y = ½ g t²
They ask us for the time for which
x = y
vo t = ½ g t²
t = 2 v₀ / g
In finding the distance that covers we simply add the three km which is
12 + 4 + 1 = 17km
17 km is the distance they cover.
We are going to use the displacement formula which is
d = vt + 1/2 at^2
d = 11.7 km
11.7 is the displacement