Answer:
The magnitude of the magnetic torque on the loop when the plane of its area is perpendicular to the magnetic field is 0.4713 J
Explanation:
Given;
radius of the circular loop of wire = 0.5 m
current in circular loop of wire = 2 A
strength of magnetic field in the wire = 0.3 T
τ = μ x Bsinθ
where;
τ is the magnitude of the magnetic torque
μ is the dipole moment of the magnetic field
θ is the inclination angle, for a plane area perpendicular to the magnetic field, θ = 90
μ = IA
where;
I is current in circular loop of wire
A is area of the circular loop = πr² = π(0.5)² = 0.7855 m²
μ = 2 x 0.7885 = 1.571 A.m²
τ = μ x Bsinθ = 1.571 x 0.3 sin(90)
τ = 0.4713 J
Therefore, the magnitude of the magnetic torque on the loop when the plane of its area is perpendicular to the magnetic field is 0.4713 J
Kinetic Energy = (1/2) mv^2.
m = 57.7 g = 57.7/1000 = 0.00577 kg.
v = 325 m/s.
E = 0.5 * 0.00577 * 325^ 2. Use your calculator.
E = 304.728125 J.
That's the kinetic energy.
Given that:
Distance , s = 18.5 m
Velocity , v = 3.85 m/s
Time , t =?
Since,
Velocity = distance/time
or
Time= distance/velocity
time= 18.5/ 3.85
time= 4.8 s
So the time elapse between the release of the ball and the ball passing home plate is 4.8 seconds.
Answer:
North
Explanation:
In an electromagnetic wave, the direction of the wave, the direction of the electric field and the direction of the magnetic field are all perpendicular to each other.
Therefore, we can find the direction of the magnetic field by using the right hand rule. We have:
- Index finger: direction of motion of the wave --> toward the center of Earth
- middle finger: direction of the electric field --> west
- thumb: direction of the magnetic field --> north
So, the magnetic field points north.
Because the charges of static electricity and the eons coming from your hair pull together to make the balloon stick