The forces are applied in opposite direction.
So the net force will be the difference of both forces.
net force =5-3=2N
This force will be in direction of 5N(bigger force) means in direction which Andy is pushing.
This is the answer on Edgenuity 2.25*10^17
Answer:
The correct option is (A).
Explanation:
When the temperature of the hot solid object increases then the radiation which emits from it gets shifted to smaller wavelength or higher frequencies. The hot appears red color.
The total energy emitted of a hot solid object is directly proportional to the fourth power of the temperature of the black body.
For example, when we switch on the light bulb, initially the radiation of the bulb appears dimmer. Then, it will become brighter. Then, it will turn yellow and then it becomes even white.
The color of the light emitted by a hot solid object depends on the temperature of the object.
Therefore, the correct option is (A).
A
Explanation:
The earth is spherical. So it's middle part is bulgjng outside. So more sunlight will be incident on the latitude near the equator. This will heat the air and it will rise up. This will cause high pressure difference and polar disturbances.
I hope this satisfies you. I hope u will follow me and make this the brainliest answer.
Answer:
The new frequency (F₂ ) will be related to the old frequency by a factor of one (1)
Explanation:
Fundamental frequency = wave velocity/2L
where;
L is the length of the stretched rubber
Wave velocity = 
Frequency (F₁) = 
To obtain the new frequency with respect to the old frequency, we consider the conditions stated in the question.
Given:
L₂ =2L₁ = 2L
T₂ = 2T₁ = 2T
(M/L)₂ = 0.5(M/L)₁ = 0.5(M/L)
F₂ = ![\frac{\sqrt{\frac{2T}{0.5(\frac{M}{L})}}}{4*L} = \frac{\sqrt{4(\frac{T}{\frac{M}{L}}})}{4*L} = \frac{2}{2} [\frac{\sqrt{\frac{T}{\frac{M}{L}}}}{2*L}] = F_1](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B%5Cfrac%7B2T%7D%7B0.5%28%5Cfrac%7BM%7D%7BL%7D%29%7D%7D%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B4%28%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%29%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B2%7D%7B2%7D%20%5B%5Cfrac%7B%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%7D%7B2%2AL%7D%5D%20%3D%20F_1)
Therefore, the new frequency (F₂ ) will be related to the old frequency by a factor of one (1).