The continent of Antartica is located at the bottom of the world. the South Pole is at its center. Antarctica is the coldest and windiest place on earth. It is covered with ice up to 3 miles thick. Very few plants and animals can survive here, but penguins, fish, and seals live on the coast and in the seas. No people live on Antarctica permanently, but scientists and tourists visit.
1350kgm/s
Explanation:
Given parameters:
Mass of Sam = 75kg
Velocity = 18m/s
Unknown:
Momentum = ?
Solution:
Momentum is the property of a moving body with respect to its mass and velocity.
Objects in motion have momentum. The more the velocity of a body, the more its momentum. Also, the more the mass of an object, the more momentum it possess.
Momentum is a function of the mass and the velocity of a body
Momentum = mass x velocity
Momentum = 75 x 18 = 1350kgm/s
learn more:
Conservation of momentum brainly.com/question/2990238
#learnwithBrainly
Both vectors should be declared to have the same number of elements.
vector<int> personName(50); vector<int> personAge(50)
Vector is a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. Although a vector has magnitude and direction, it does not have position like a point.
Learn more about Vectors here:
brainly.com/question/13322477
#SPJ4
Answer:
2.When they reach the bottom of the fall
Explanation:
The potential energy of the waterfall is maximum at the maximum height and decreases with decrease in height. Based on the law of conservation of mechanical energy, as the potential energy of the water fall is decreasing with decrease in height of the fall, its kinetic energy will be increasing and the kinetic energy will be maximum at zero height (bottom of the fall).
Thus, the correct option is "2" When they reach the bottom of the fall
Answer:
147 J
Explanation:
The energy transferred to potential energy is :
U = m * g * h = (5 kg) * (9.8 m/s^2) * (3 m) = 147 J