Answer:
1.54 kg
Explanation:
mass of first block (m) = 0.76 kg
acceleration due to gravity (g) = 9.8 m/s
what is the mass (m) of the second block
mg = kx
where m is the mass, g is the acceleration due to gravity, k is the
spring constant and x is the extension
0.76 x 9.8 = kx
7.5 = kx
k = 7.5/x ... equation 1
- when a second block is attached to the first one the amount of stretch triples (this means that extension (x) = 3x)
therefore the new mass becomes m + 0.76 and the extension
becomes 3x
with the new mass and extension, mg = kx now becomes
(m+0.76)g = k(3x) ... equation 2
Recall that k = 7.5/x from equation 1, substituting this value of k into
equation 2 we have
(m+0.76)g =
× (3x)
(m+0.76)g = 7.5 × 3
substituting the value of g = 9.8 m/s^{2}
(m + 0.76) x 9.8 = 7.5 x 3
m + 0.76 = 22.5 ÷ 9.8
m + 0.76 = 2.3
m = 2.3 - 0.76 = 1.54 kg
Answer:
B. There is a direct proportion between the mass and force listed in the table.
Explanation:
From the table, the values of force increases with increase in the value of mass.
if 5kg=25 N
Finding the contant of proportionality k;
k=25/5=5
thus M=k(F)...........where M is mass in kg and F is force in newton, then
M=5F
This show that for every value of mass, we get the value of Force if we multiply by a contant k=5
This means there is a direct proportionality relation between mass and force in the table.
Answer:
Distance, d = 192 meters
Explanation:
We have,
Initial velocity of an object is 10 m/s
Acceleration of the object is 3.5 m/s²
Time, t = 8 s
We need to find the distance travelled by the object during that time. Second equation of motion gives the distance travelled by the object. It is given by :


So, the distance travelled by the object is 192 meters.
Answer:
Y = V / f where Y equals wavelength
4 Y1 = V / f1 for a closed pipe the wavelength is 1/4 the length of the pipe
2 Y2 = V / f2 for the open pipe the wavelength is 1/2 the length of the pipe
Y1 / Y2 = 2 = f2 / f1 dividing equations
f2 = 2 f1
the new fundamental frequency is 2 * 130.8 = 261.6
(The new wavelength is 1/2 the original wavelength so the frequency must double to produce the same speed.
the answer is 0.284 lb/in3