Answer:

Explanation:
From the question we are told that
Distance b/e antenna's 
Frequency of antenna Radiation
Distance from receiver 
Intensity of Receiver 
Distance difference of the receiver b/w antenna's 
Generally the equation for Phase difference
is mathematically given by



<h3>

</h3>
Therefore phase difference f between the two radio waves produced by this path difference is given as

It is potential energy because the band is not in movement, th band has the potential to move.
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?
Answer:
D. none of them.
Explanation:
This is because Ohm's law is:
Voltage = Current × Resistance
or,
V = IR
Look that one up in you text book PG:678 that is if you got the same book as my friend<span />