Answer:
a = 52s²
Explanation:
<u>How to find acceleration</u>
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
<u>Solve</u>
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s
As electrons move through the conductor, some collide with atoms, other electrons, or impurities in the metal.
Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.
Answer:
The pitch will progressively lower
Explanation:
If i were bungee jumping from a bridge while blowing a hand-held air horn and someone who remains on the bridge will hear a decreased pitch or frequency as the source is moving away from the stationary listener as per the Dooplers effect. Hence, the pitch will progressively lower as the source is moving away from the observer.
Boyles law
Pressure and volume are inversely proportional as the new variable changes from the known.
Double the pressure equals 1/2 of original volume, assuming temperature remains the same.
So 40.0 mL is the new volume as it is compressed.