Answer:
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Explanation:
The solubility constant give us the molar solubilty of ionic compounds. In general for a compound AB the ksp will be given by:
Ksp = (A) (B) where A and B are the molar solubilities = s² (for compounds with 1:1 ratio).
It follows then that the higher the value of Ksp the greater solubilty of the compound if we are comparing compounds with the same ionic ratios:
Comparing AgBr: Ksp = 5.4 x 10⁻¹³ with AgCl: Ksp = 1.8 x 10⁻¹⁰, AgCl will be more soluble.
Comparing Ag2CO3: Ksp = 8.0 x 10⁻¹² with AgCl Ksp = AgCl: Ksp = 1.8 x 10⁻¹⁰ we have the complication of the ratio of ions 2:1 in Ag2CO3, so the answer is not obvious. But since we know that
Ag2CO3 ⇄ 2 Ag⁺ + CO₃²₋
Ksp Ag2CO3 = 2s x s = 2 s² = 8.0 x 10-12
s = 4 x 10⁻12 ∴ s= 2 x 10⁻⁶
And for AgCl
AgCl ⇄ Ag⁺ + Cl⁻
Ksp = s² = 1.8 x 10⁻¹⁰ ∴ s = √ 1.8 x 10⁻¹⁰ = 1.3 x 10⁻⁵
Therefore, AgCl is more soluble than Ag₂CO₃
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Answer:
The spin of the complex is 5.92 B.M
Explanation:
Please see the attachments below
Empirical formula is the simplest ratio of components making up a compound.
The percentage composition of each element has been given
therefore the mass present of each element in 100 g of compound is
B N H
mass 40.28 g 52.20 g 7.53 g
number of moles
40.28 g / 11 g/mol 52.20 g / 14 g/mol 7.53 g / 1 g/mol
= 3.662 mol = 3.729 mol = 7.53 mol
divide the number of moles by the least number of moles, that is 3.662
3.662 / 3.662 3.729 / 3.662 7.53 / 3.662
= 1.000 = 1.018 = 2.056
the ratio of the elements after rounding off to the nearest whole number is
B : N : H = 1 : 1 : 2
therefore empirical formula for the compound is B₁N₁H₂
that can be written as BNH₂
Pure substances are substances<span> that are made of only one type of atom or molecule....</span>