Answer:
The volume will also decrease.
Explanation:
This illustration clearly indicates Boyle's law.
Boyle's law states that the volume of a fixed mass of gas is directly proportional to the absolute temperature, provided the pressure remains constant. Mathematically, it is represented as:
V & T
V = KT
K = V/T
V1/T1 = V2/T2 =... = Vn/Tn
Where:
T1 and T2 are the initial and final temperature respectively, measured in Kelvin.
V1 and V2 are the initial and final volume of the gas respectively.
From the illustration above, the volume is directly proportional to the temperature. This implies that as the temperature increases, the volume will also increase and as the temperature decreases, the volume also will decrease.
Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm
Answer:
thank you
So much this was very nice.
Answer: 1.2642*10²⁵ on both sides
Explanation:
First check how many moles are there on each side.
Since this is a balanaced equataion the number of moles on each side is the same thus the number of atoms is also same on both sides
There are 3 moles of carbon and 8 moles of hydrogen in C3H8
and 2 moles of oxygen in O2 but there 5 infront so 2*5 is 10
Number of moles on the right is 10+8+3 = 21
Now use Avogrado's constant
21 Moles* (6.02*10²³)/Mol
= 21*6.02*10²³
= 1.2642*10²⁵