Answer: 25N
method: total force in the right hand direction is 100N and total force in the left hand direction is 125N. To get the net force, we add forces if they are in the same direction and substract if they are in opposite directions. since 100N and 125N are in opposite directions, we substract the larger value from the smaller value. Then we get 25N in the left hand direction as the final answer.
Answer:
The sound level of the 26 geese is 
Explanation:
From the question we are told that
The sound level is 
The number of geese is 
Generally the intensity level of sound is mathematically represented as
The intensity of sound level in dB for one goose is mathematically represented as
![Z_1 = 10 log [\frac{I}{I_O} ]](https://tex.z-dn.net/?f=Z_1%20%3D%2010%20log%20%5B%5Cfrac%7BI%7D%7BI_O%7D%20%5D)
Where I_o is the threshold level of intensity with value 
is the intensity for one goose in 
For 26 geese the intensity would be

Then the intensity of 26 geese in dB is
![Z_{26} = 10 log[\frac{26 I }{I_o} ]](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%5B%5Cfrac%7B26%20I%20%7D%7BI_o%7D%20%5D)
![Z_{26} = 10 log (\ \ 26 * [\frac{ I }{I_o} ]\ \ )](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%20%28%5C%20%5C%2026%20%2A%20%20%5B%5Cfrac%7B%20I%20%7D%7BI_o%7D%20%5D%5C%20%5C%20%29)
![Z_{26} = 10 log (\ \ 26 \ \ ) * (\ \ 10 log [\frac{ I }{I_o} ]\ \ )](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%20%28%5C%20%5C%2026%20%20%5C%20%5C%20%29%20%2A%20%20%20%28%5C%20%5C%20%2010%20log%20%5B%5Cfrac%7B%20I%20%7D%7BI_o%7D%20%5D%5C%20%5C%20%29)
From the law of logarithm we have that
![Z_{26} = 10 log 26 + 10 log [\frac{I}{I_0} ]](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%2026%20%2B%20%2010%20log%20%5B%5Cfrac%7BI%7D%7BI_0%7D%20%5D)


Answer:
work = 1728
Power = 134
Explaination:
by using the formula,
Work(W)= Force(F)×Distance(D)
<h2>
and</h2>
Power(P)= Work(W)/Time taken(T)
Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s
If the mass of the sun is 1x, at least one planet will fall into the habitable zone. if I place a planet in orbits 2, 6, and 75, and all planets will orbit the sun successfully.
If the mass of the sun is 2x, at least one planet will fall into the habitable zone. if I place a planet in orbits 84, 1, and 5, and all planets will orbit the sun successfully.
If the mass of the sun is 3x, at least one planet will fall into the habitable zone if I place a planet in orbits 672, and 7 and all planets will orbit the sun successfully.