There are 7 digits from decimal to 1st digit, and it's coming from right, so exponent will be in negative 7
In short, Your Answer would be: Option C) <span>6.75 × 10-7
</span>
Hope this helps!
Newtons universal law of gravitation
hope this helps
Answer:
<h2>36.09 L</h2>
Explanation:
The initial volume can be found by using the formula for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume.
Since we're finding the initial volume

We have

We have the final answer as
<h3>36.09 L</h3>
Hope this helps you
Answer:
1) After adding 15.0 mL of the HCl solution, the mixture is before the equivalence point on the titration curve.
2) The pH of the solution after adding HCl is 12.6
Explanation:
10.0 mL of 0.25 M NaOH(aq) react with 15.0 mL of 0.10 M HCl(aq). Let's calculate the moles of each reactant.


There is an excess of NaOH so the mixture is before the equivalence point. When HCl completely reacts, we can calculate the moles in excess of NaOH.
NaOH + HCl ⇒ NaCl + H₂O
Initial 2.5 × 10⁻³ 1.5 × 10⁻³ 0 0
Reaction -1.5 × 10⁻³ -1.5 × 10⁻³ 1.5 × 10⁻³ 1.5 × 10⁻³
Final 1.0 × 10⁻³ 0 1.5 × 10⁻³ 1.5 × 10⁻³
The concentration of NaOH is:
![[NaOH]=\frac{1.0 \times 10^{-3} mol }{25.0 \times 10^{-3} L} =0.040M](https://tex.z-dn.net/?f=%5BNaOH%5D%3D%5Cfrac%7B1.0%20%5Ctimes%2010%5E%7B-3%7D%20mol%20%7D%7B25.0%20%5Ctimes%2010%5E%7B-3%7D%20L%7D%20%3D0.040M)
NaOH is a strong base so [OH⁻] = [NaOH].
Finally, we can calculate pOH and pH.
pOH = -log [OH⁻] = -log 0.040 = 1.4
pH = 14 - pOH = 14 - 1.4 = 12.6
Answer:
Here's what I get
Explanation:
Assume the initial concentrations of H₂ and I₂ are 0.030 and 0.015 mol·L⁻¹, respectively.
We must calculate the initial concentration of HI.
1. We will need a chemical equation with concentrations, so let's gather all the information in one place.
H₂ + I₂ ⇌ 2HI
I/mol·L⁻¹: 0.30 0.15 x
2. Calculate the concentration of HI
![Q_{\text{c}} = \dfrac{\text{[HI]}^{2}} {\text{[H$_{2}$][I$_{2}$]}} =\dfrac{x^{2}}{0.30 \times 0.15} = 5.56\\\\x^{2} = 0.30 \times 0.15 \times 5.56 = 0.250\\x = \sqrt{0.250} = \textbf{0.50 mol/L}\\\text{The initial concentration of HI is $\large \boxed{\textbf{0.50 mol/L}}$}](https://tex.z-dn.net/?f=Q_%7B%5Ctext%7Bc%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BHI%5D%7D%5E%7B2%7D%7D%20%7B%5Ctext%7B%5BH%24_%7B2%7D%24%5D%5BI%24_%7B2%7D%24%5D%7D%7D%20%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.30%20%5Ctimes%200.15%7D%20%3D%20%205.56%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%200.30%20%5Ctimes%200.15%20%5Ctimes%205.56%20%3D%200.250%5C%5Cx%20%3D%20%5Csqrt%7B0.250%7D%20%3D%20%5Ctextbf%7B0.50%20mol%2FL%7D%5C%5C%5Ctext%7BThe%20initial%20concentration%20of%20HI%20is%20%24%5Clarge%20%5Cboxed%7B%5Ctextbf%7B0.50%20mol%2FL%7D%7D%24%7D)
3. Plot the initial points
The graph below shows the initial concentrations plotted on the vertical axis.