B) False- It has seven
A hexagon would have 6.
Answer:
1. 31.25 mL
2. 1.98 g/L
3. 0.45 g/mL
Explanation:
For each of the problems, you need to perform unit conversions. You need to use the information given to you to convert to a specific unit.
1. You need volume (mL). You have density (g/mL) and mass (g). Divide mass by density. You will cancel out mL and be left with g.
(50.0 g)/(1.60 g/mL) = 31.25 mL
2. You are given grams and liters. You need to find density with units g/L. This means that you have to divide grams by liters.
(0.891 g)/(0.450 L) = 1.98 g/L
3. You have to find density again but this time with units g/mL. Divide the given mass by the volume.
(10.0 g)/(22.0 mL) = 0.45 g/mL
If the spoons touch, no heat will flow among the spoons because they are already in thermal equilibrium with each other. This is hinted by the statement "they are at room temperature" which means they all have the same temperature. Heat only flows when there is a difference in temperature.<span>
The answer will be </span><span>C. No heat will flow among the spoons
</span><span>
®PLEASE MARK AS BRAINLIEST TO HELP ME LEVEL UP®</span>
The correct option is B. To get the number of atom for each compound, each element in the compound will be counted as an atom. For instance, for Fe[ClO4]2, there are 1 atom of Fe, 2 atoms of Cl, and 8 atoms of O, making a total of 11 atoms [1 + 2 + 8= 11]. The other options have less than 11 atoms.
<span>THE HIGHEST CONCENTRATION OF HYDROGEN IONS IS LOCATED IN THE INTER-MEMBRANE SPACE. HYDROGEN IONS REACH THE INTER-MEMBRANE SPACE THROUGH PROTEIN CHANNELS EMBEDDED IN THE MITOCHONDRIAL MEMBRANE. THE MAIN FUNCTION OF INTER MEMBRANEIS OXIDATIVE PHOSPHORLATON. ENERGY IS REQUIRED TO MOVE THE HYDROGEN IONS ACROSS THE MEMBRANE BECAUSE THE HYDROGEN IONS ARE MOVING AGAINST THE CONCENTRATION GRADIENT. H+ GOES AGAINST THE CONCENTRATION GRADIENT THE USE OF THE GRADIENT TO DRIVE ATP SYNTHASE. HYDOGEN IONS DRIVE ATP SYNTHASE IN PHTOSYNTHESIS. THIS HAPPENS WHEN HYDROGEN IONS GET PUSHED ACROSS THE MEMBRANE CREATING A HIGH CONCENTRATION INSIDE THE THYLAKOID.</span>