Answer:
14.3 m/s
Explanation:
velocity equation
v= d/t
v= 60/4.2
v=14.28
round it to 1 decimal place
v= 14.3m/s
C a meter stick with only centimeters
D a ruler with millimeters and centimeters
D would be to the nearest half milimeter. Take some time to measure with a 2 inch ruler. Would you really need to know the length to half a mil ?
If the spaceship's Physicist happens to be hanging out of one side
of the ship, and he measures the speed of the photons as they pass
him and leave the ship, he'll see them passing him at 'c' ... the speed
of light.
When those photons pass somebody who happens to be in their
path, and he decides to measure their speed, he'll see them move
past him at 'c' ... the speed of light.
It doesn't matter whether the observer who measures them is
moving, or at what speed.
And it doesn't matter what source the photons come from, or
whether the source is moving, or at what speed.
And it doesn't matter what the photons' wavelength/frequency is ...
anything from radio to gamma rays.
The photons pass everybody at 'c' ... the speed of light.
Yes, I hear you. That can't be true. It's crazy.
Maybe it's crazy, but it's true.
The pipeline will run 1,100 miles, from the Sangachal terminal near Baku, the capital of Azerbaijan, through Georgia and to the Turkish Mediterranean port of Ceyhan.
Answer:
An electron orbital describes a three-dimensional space where an electron can be found 90% of the time.
Explanation:
According to Heisenberg's theory we cannot observe the position and velocity of an electron in an orbit, but if they were around the nucleus (in orbit), it would be possible to know its velocity and position, which would be contrary to the principle of Heisenberg So we can say that no electron revolves around a certain orbit around the nucleus, so we can only predict if the electron will be in the right position at the right time.
From there we find two definitions for electron orbital let's see:
- Orbital is considered the region of space, where each electron spends most of its time.
- Orbital is considered the region of space that is most likely to find an electron.