The force is given by F=iL×B where i is current, L is the path the current follows (the wire path) and B is the magnetic field. Also recall that the × symbol is the vector cross product, which can be expressed by the sine of the angle between the vectors L and B. Therefore we can also say F=iLBsin(θ). Do you know what value of θ makes sin(θ) the largest? This will tell you if parallel or perpendicular makes the force strongest. For one value of θ it will be zero, and for the other it will be maximized.
12 divided by 2/5 is 30.
The difference between 764.7 and 45.39 is 719.31.
:)
Tbh ! All of them have lens but I would go with B.) Smart Phone
Hope This Helps !!!
Answer:
is the mass of librarian.
Explanation:
Given:
- mass of the system,

- velocity of librarian relative to the ground,

- velocity of the cart relative to the ground,

N<u>ow using the principle of elastic collision:</u>
Net momentum of the system is zero.


is the mass of librarian.
Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s