Answer:<span>Humid air is lighter, so it has lower pressure.
The reason is the molecules of water are H2O, whose molar mass is 18 g/mol.
These molecules displaces molecules of N2 and O2, whose molar masses are:
N2: 2*14g/mol = 28 g/mol, and
O2: 2*16g/mol = 32 g/mol.
Then molecules of 28g/mol and 32 g/mol are being replaced with molecules of 18g/mol, leading to a lower weight of the same volume of air, which results in lower pressure.
</span>
To solve this problem we will apply the concepts related to load balancing. We will begin by defining what charges are acting inside and which charges are placed outside.
PART A)
The charge of the conducting shell is distributed only on its external surface. The point charge induces a negative charge on the inner surface of the conducting shell:
. This is the total charge on the inner surface of the conducting shell.
PART B)
The positive charge (of the same value) on the external surface of the conducting shell is:
The driver's net load is distributed through its outer surface. When inducing the new load, the total external load will be given by,
Answer:
dt/dx = -0.373702
dt/dy = -1.121107
Explanation:
Given data
T(x, y) = 54/(7 + x² + y²)
to find out
rate of change of temperature with respect to distance
solution
we know function
T(x, y) = 54 /( 7 + x² + y²)
so derivative it x and y direction i.e
dt/dx = -54× 2x / (7 +x² + y²)² .........................1
dt/dy = -54× 2y / (7 + x² + y²)² .........................2
now put the value point (1,3) as x = 1 and y = 3 in equation 1 and 2
dt/dx = -54× 2(1) / (7 +(1)² + (3)²)²
dt/dx = -0.373702
and
dt/dy = -54× 2(3) / (7 + (1)² + (3)²)²
dt/dy = -1.121107
Answer:
A police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase.
Explanation:
In Physics, Doppler effect can be defined as the change in frequency of a wave with respect to an observer in motion and moving relative to the source of the wave.
Simply stated, Doppler effect is the change in wave frequency as a result of the relative motion existing between a wave source and its observer.
The term "Doppler effect" was named after an Austrian mathematician and physicist known as Christian Johann Doppler while studying the starlight in relation to the movement of stars.
<em>The phenomenon of Doppler effects is generally applicable to both sound and light. </em>
An example of the Doppler effect is a police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase. This is so because when a sound object moves towards you, its sound waves frequency increases, thereby causing a higher pitch. However, if the sound object is moving away from the observer, it's sound waves frequency decreases and thus resulting in a lower pitch.
<em>Other fields were the Doppler effects are applied are; astronomy, flow management, vibration measurement, radars, satellite communications etc. </em>