Answer:
a)
, b)
, c) 
Explanation:
a) The tank can be modelled by the Principle of Mass Conservation:

The mass flow rate exiting the tank is:



b) An expression for the specific enthalpy at outlet is derived from the First Law of Thermodynamics:


Properties of water are obtained from tables:



The specific enthalpy at outlet is:


c) After a quick interpolation from data availables on water tables, the final temperature is:

Technician B is correct because torque is a force of an object.
Since the armature is wave wound, the magnetic flux per pole is 0.0274 Weber.
<u>Given the following data:</u>
- Number of armature conductors = 144 slots
- Number of poles = 4 poles
- Number of parallel paths = 2
To find the magnetic flux per pole:
Mathematically, the emf generated by a DC generator is given by the formula;
× 
<u>Where:</u>
- E is the electromotive force in the DC generator.
- Z is the total number of armature conductors.
- N is the speed or armature rotation in r.p.m.
- P is the number of poles.
- A is the number of parallel paths in armature.
First of all, we would determine the total number of armature conductors:
×
× 
Z = 864
Substituting the given parameters into the formula, we have;
× 
× 
<em>Magnetic flux </em><em>=</em><em> 0.0274 Weber.</em>
Therefore, the magnetic flux per pole is 0.0274 Weber.
Read more: brainly.com/question/15449812?referrer=searchResults
Answer:
the elongation of the metal alloy is 21.998 mm
Explanation:
Given the data in the question;
K = σT/ (εT)ⁿ
given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,
strain-hardening exponent n = 0.22
we substitute
K = 345 / 
K = 815.8165 Mpa
next, we determine the true strain
(εT) = (σT/ K)^1/n
given that σT = 412 MPa
we substitute
(εT) = (412 / 815.8165 )^(1/0.22)
(εT) = 0.04481 mm
Now, we calculate the instantaneous length
= 
given that
= 480 mm
we substitute
=
× 
= 501.998 mm
Now we find the elongation;
Elongation = 
we substitute
Elongation = 501.998 mm - 480 mm
Elongation = 21.998 mm
Therefore, the elongation of the metal alloy is 21.998 mm
The following scenarios are pertinent to driving conditions that one may encounter. See the following rules of driving.
<h3>What do you do when the car is forced into the guardrail?</h3>
Best response:
- I'll keep my hands on the wheel and slow down gradually.
- The reason I keep my hands on the steering wheel is to avoid losing control.
- This will allow me to slowly back away from the guard rail.
- The next phase is to gradually return to the fast lane.
- Slamming on the brakes at this moment would result in a collision with the car behind.
Scenario 2: When driving on a wet road and the car begins to slide
Best response:
- It is not advised to accelerate.
- Pumping the brakes is not recommended.
- Even lightly depressing and holding down the brake pedal is not recommended.
- The best thing to do is take one foot off the gas pedal.
- There should be no severe twists at this time.
Scenario 3: When you are in slow traffic and you hear the siren of an ambulance behind
Best response:
- The best thing to do at this moment is to go to the right side of the lane and come to a complete stop.
- This helps to keep the patient in the ambulance alive.
- It also provide a clear path for the ambulance.
- Moving to the left is NOT recommended.
- This will exacerbate the situation. If there is no place to park on the right shoulder of the road, it is preferable to stay in the lane.
Learn more about rules of driving. at;
brainly.com/question/8384066
#SPJ1