The sun’s huge mass gives it a strong gravitational pull. Because of this gravitational pull, planets that are closer to the sun tend to have different motion than planets that are further away from the sun, because the gravity becomes stronger the closer you get. I hope this helped!
Answer:
A 30 lb weight is attached to the end of a spring. The spring is stretched 6 in. Find the equation of motion if the weight is released from rest a point 3 inches above equilibrium position 。x(,) =-2 sin(81) 32 x(t) =-32 cos(80 O x(r) =-icos(81)
Explanation:
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
The total resistance in a series circuit is equal to the sum of all resistors (R total = ΣRi).
R total = R1 + R2 + R3 = (3 + 4 + 5) Ω = 12 Ω