Answer:

Explanation:
As the path is straight, so the speed is equivalent to velocity. Now. assuming that the acceleration and deceleration of the train are constant. So, change of velocity with respect to time for acceleration as well as deceleration is constant. Hence, the slope of the speed-time graph is constant for the time of acceleration as well as deceleration. The speed for the time from
to
is constant, so slope for this interval of time is zero. The speed-time graph is shown in the figure.
The total distance covered by the train during the entire journey is the area of the speed-time graph.
Area


As velocity is in
and time is in
so the unit of area is 
Hence, the total distance is
.
Responder:
<h2>
490 julios
</h2>
Explicación:
Se dice que el trabajo se realiza cuando una fuerza aplicada a un objeto hace que el objeto se mueva a través de una distancia. El trabajo realizado por un cuerpo se expresa mediante la fórmula;
Workdone = Fuerza * Distancia
Como Fuerza = masa * aceleración,
Workdone = masa * aceleración * distancia
Masa dada = 5.0kg, aceleración = 2.0m / s² d =?
Para obtener d, usaremos una de las leyes del movimiento,
d = ut + 1 / 2at²
u = 0 (ya que el cuerpo acelera desde el reposo) yt = 7.0s
d = 0 + 1/2 (2) (7) ²
d = 49m
Workdone = 5 * 2 * 49
Workdone = 490 Julios
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.
Answer:

Explanation:
assume
M= mass of Mars
m=mass of phobos
r=orbital radius
T=period
we can apply F=ma to this orbital motion (considering the cricular motion laws)
where,
and a=rω^2
where ω=
and G is the universal gravitational constant.
G = 6.67 x 10-11 N m2 / kg2
