Answer:
Planets that are farther from the sun than the earth (all but Mercury and Venus) will exhibit retrograde motion.
If the position of the planet is observed relative to the background stars, the planet will appear to move backward relative to the stars when the earth is moving in an Eastward direction faster than the planet, and the planet appears to move backwards relative to the stars
(The planet will be on the side of the earth that is opposite that of the sun)
Trick question? In order to have kinetic energy, an object must be moving. Therefore, in this case, kinetic energy would be 0. If it were asking about potential energy, it would be a different story.
Answer
given,
F₁ = 15 lb
F₂ = 8 lb
θ₁ = 45°
θ₂ = 25°
Assuming the question's diagram is attached below.
now,
computing the horizontal component of the forces.
F_h = F₁ cos θ₁ - F₂ cos θ₂
F_h = 15 cos 45° - 8 cos 25°
F_h = 3.36 lb
now, vertical component of the forces
F_v = F₁ sin θ₁ + F₂ sin θ₂
F_v = 15 sin 45° + 8 sin 25°
F_v = 13.98 lb
resultant force would be equal to


F = 14.38 lb
the magnitude of resultant force is equal to 14.38 lb
direction of forces


θ = 76.48°
Answer:
Explanation:
The picture attached shows the full explanation and i hope it helps. Thank you
Answer: Zero.
Explanation:
By the first Newton's law, we know that:
every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.
Now, we know that the car is moving with constant speed, then there is no net force acting on the car, which means that the car is already in equilibrium.
Then if we add one force to the situation, the car will not be anymore in equilibrium.
The correct option is zero.