Answer:
He can return to the spacecraft by sacrificing some of the tools employing the principle of conservation of momentum.
Explanation:
By carefully evaluating his direction back to the ship, the astronaut can throw some of his tools in the opposite direction to that. On throwing those tools of a certain mass, they travel at a certain velocity giving him velocity in the form of recoil in the opposite direction of the velocity of the tools. This is same as a gun and bullet recoil momentum conservation. It is also the principle on which the operational principles of their maneuvering unit is designed.
Answer:
0.5A
Explanation:
Using
,
R is the resistance (in Ohms)
V is the voltage (in V)
I is the current (in A)

I = 0.5A
AnMolar mass of CuCO3 = 123.5549 g/mol
This compound is also known as Copper(II) Carbonate.
Convert grams CuCO3 to moles or moles CuCO3 to grams
Molecular weight calculation:
63.546 + 12.0107 + 15.9994*3
Percent composition by element
Element Symbol Atomic Mass # of Atoms Mass Percent
Copper Cu 63.546 1 51.431%
Carbon C 12.0107 1 9.721%
Oxygen O 15.9994 3 38.848%
Explanation:
Answer:
a) F = 680 N, b) W = 215 .4 J
, c) F = 1278.4 N
Explanation:
a) Hooke's law is
F = k x
To find the displacement (x) let's use the elastic energy equation
= ½ k x²
k = 2
/ x²
k = 2 85.0 / 0.250²
k = 2720 N / m
We replace and look for elastic force
F = 2720 0.250
F = 680 N
b) The definition of work is
W = ΔEm
W =
- 
W = ½ k (
² - x₀²)
The final distance
= 0.250 +0.220
= 0.4750 m
We calculate the work
W = ½ 2720 (0.47² - 0.25²)
W = 215 .4 J
We calculate the strength
F = k 
F = 2720 0.470
F = 1278.4 N
It’s none of those because it’s moving at a constant rate