Answer:
<span>In the addition of hbr to 1-butyne the electrophile in the first step of the mechanism is <u>Hydrogen atom of HBr</u>.
Explanation:
In this reaction first of all HBr approaches the triple bond. A Pi Complex (weak inter-molecular interactions) is formed between the two molecules. And the triple bond attacks the partial positive hydrogen atom creating a negative charge on Bromine along with positive charge on itself (Sigma Complex). In second step the negative Bromide attacks the positive carbon of Butyne.</span>
Burrows, tracks, coprolites, nests and footprints are examples of traces that can be found in a fossil.
Answer: E=∆H*n= -40.6kj
Explanation:
V(CO) =15L=0.015M³
P=11200Pa
T=85C=358.15K
PV=nRT
n=(112000×0.015)/(8.314×358.15)
n(Co)= 0.564mol
V(Co)= 18.5L = 0.0185m³
P=744torr=98191.84Pa
T= 75C = 388.15k
PV=nRT
n= (99191.84×0.0185)/(8.314×348.15)
n(H2) = 0.634mol
n(CH30H) =1/2n(H2)=1/2×0.634mol
=0.317mol
∆H =∆Hf{CH3OH}-∆Hf(Co)
∆H=-238.6-(-110.5)
∆H = 128.1kj
E=∆H×n=-40.6kj.
Answer:
C. Egg
Explanation:
has more higher concentration on water.
<u>Answer:</u> The moles of carbon dioxide formed in the reaction is 20 moles.
<u>Explanation:</u>
We are given:
Number of moles of butane = 5.0 moles
The chemical reaction for the combustion of butane follows the equation:

As, oxygen is present in excess. So, it is considered as an excess reagent.
Thus, butane is considered as a limiting reagent because it limits the formation of products.
By stoichiometry of the reaction:
2 moles of butane produces 8 moles of carbon dioxide.
So, 5 moles of butane will produce =
of carbon dioxide.
Hence, the moles of carbon dioxide formed in the reaction is 20 moles.