I am not sure but rocky bodies ranging from large to small in size
Answer:
1) mass and type of material
2) type of material
3) temperature
Explanation:
Answer:
Because the optimal range of buffering for a formic acid potassium formate buffer is 2.74 ≤ pH ≤ 4.74.
Explanation:
Every buffer solution has an optimal effective range due to pH = pKa ± 1. Outside this range, there is not enough acid molecules or conjugate base molecules to sustain the pH without variation. There is a certain amount of both molecules that has to be in the solution to maintain a pH controlled.
Being for the formic acid the pKa 3.74, the optimal effective range is between 2.74 and 4.74. Upper or lower these range a formic acid/potassium formate buffer does not work.
So use equation: ΔH = MCΔT
M = mass of water
C = waters specific heat capacity (4.18)
ΔT = the temp. change of the reaction
ΔH = 100 x 4.18 x 10 = 4180J or 41.8KJ
so the cube absorbed 4180J of energy
hope that helps
The frequency of collisions between the N₂ and H₂ molecules will decrease and the rate of reaction will also decrease.
Since the water is cooler than the gas mixture, heat will flow from the gas to the water.
The gas will cool down, so the average kinetic energy of the gas molecules will decrease.
The molecules will be moving more slowly, so there will be <em>fewer collisions</em> and <em>fewer of these collisions will have enough energy to react</em>.
The rate of reaction between H₂ and N₂ molecules at room temperature is exceedingly slow, <em>but cooling the gas mixture will make the reaction even slower</em>.