Your reaction
.. Fe + O2 ---> FexOy
for this reaction..
.. the Fe on the left is in the 0 oxidation state
.. the Fe on the right is in the +(2y/x) oxidation state
.. the O on the left is in the 0 oxidation state
.. the O on the right is in the -2 oxidation state
meaning
.. the O is reduced... . . (it's reduced in oxidation state)
.. the Fe is oxidized.. . .(oxidation state increased)
this is a REDOX reaction
*********
AND.. it's also a synthesis reaction.. (aka combination reaction)
Answer is: osmotic pressure.
Osmotic pressure, alongside the vapor pressure depression, freezing point depression and the boiling point elevation are<span> the </span>colligative properties od solution.
<span>The direction of osmotic pressure is always from the side with the lower concentration (c = n/V) of solute to the side with the higher concentration.</span>
Balanced equation:
<span>CaO + 2 HCl --> CaCl2 + H2O </span>
<span>Calculate moles of each reactant: </span>
<span>60.4 g CaO / 56.08 g/mol = 1.08 mol CaO </span>
<span>69.0 g HCl / 36.46 g/mol = 1.89 mol HCl </span>
<span>Identify the limiting reactant: </span>
<span>Moles CaO needed to react with all HCl: </span>
<span>1.89 mol HCl X (1 mol CaO / 2 mol HCl) = 0.946 mol CaO </span>
<span>Because you have more CaO than that available, HCl is the limiting reactant. </span>
<span>Calculate moles and mass CaCl2: </span>
<span>1.89 mol HCl X (1 mol CaCl2 / 2mol HCl) X 111.0 g/mol = 105 g CaCl2</span>
Answer:
C. Golden rice enriched with vitamin A
Answer: Contamination
Explanation: This is a known contrainst when performing transformation in the lab. Normally the Pglo plasmid asides glowing under UV, possess a Amp gene that codes for resistance to the antibiotics Ampicillin. Transform cells will survive while untransformed cells will normally die. If untransformed (non glowing, non Ampicillin resistant) cells thrive in the medium, it is definitely a case of contamination. Start again but this time, disinfect appropriately bad be cautious of any potential contamination.