Answer:
Explanation:
The rate law of a chemical reaction is given by
This law can be written for any experiment, and making the quotient between those expressions the reaction orders can be found
Between experiments 1 and 2
![\frac{-r_{A1}}{{-r}_{A2}}=\left(\frac{\left[NH_3\right]_1}{\left[NH_3\right]_2}\right)^\beta](https://tex.z-dn.net/?f=%5Cfrac%7B-r_%7BA1%7D%7D%7B%7B-r%7D_%7BA2%7D%7D%3D%5Cleft%28%5Cfrac%7B%5Cleft%5BNH_3%5Cright%5D_1%7D%7B%5Cleft%5BNH_3%5Cright%5D_2%7D%5Cright%29%5E%5Cbeta)
Then the expression for the calculation of 
![\beta=\frac{ln\frac{-r_{A1}}{-r_{A2}}}{ln\left(\frac{\left[NH_3\right]_1}{\left[NH_3\right]_2}\right)}=\frac{ln\frac{0.2130}{0.1065}}{ln\left(\frac{0.250}{0.125}\right)}](https://tex.z-dn.net/?f=%5Cbeta%3D%5Cfrac%7Bln%5Cfrac%7B-r_%7BA1%7D%7D%7B-r_%7BA2%7D%7D%7D%7Bln%5Cleft%28%5Cfrac%7B%5Cleft%5BNH_3%5Cright%5D_1%7D%7B%5Cleft%5BNH_3%5Cright%5D_2%7D%5Cright%29%7D%3D%5Cfrac%7Bln%5Cfrac%7B0.2130%7D%7B0.1065%7D%7D%7Bln%5Cleft%28%5Cfrac%7B0.250%7D%7B0.125%7D%5Cright%29%7D)
Resolving
Doing the same between experiments 3 and 4 the expression for
is
![\alpha=\frac{ln\frac{-r_{A3}}{-r_{A4}}}{ln\left(\frac{\left[BF_3\right]_3}{\left[BF_3\right]_4}\right)}=\frac{ln\frac{0.0682}{0.1193}}{ln\left(\frac{0.200}{0.350}\right)}](https://tex.z-dn.net/?f=%5Calpha%3D%5Cfrac%7Bln%5Cfrac%7B-r_%7BA3%7D%7D%7B-r_%7BA4%7D%7D%7D%7Bln%5Cleft%28%5Cfrac%7B%5Cleft%5BBF_3%5Cright%5D_3%7D%7B%5Cleft%5BBF_3%5Cright%5D_4%7D%5Cright%29%7D%3D%5Cfrac%7Bln%5Cfrac%7B0.0682%7D%7B0.1193%7D%7D%7Bln%5Cleft%28%5Cfrac%7B0.200%7D%7B0.350%7D%5Cright%29%7D)
Resolving

This means that the rate law for this reaction is
Answer:
Our energy supply comes mainly from fossil fuels, with nuclear power and renewable sources rounding out the mix.
The energy associated with an object's motion is called kinetic energy. Kinetic energy is the energy of motion. All moving objects have kinetic energy
Explanation:
Answer:
The resultant structure is shown below. This structure contains four shared pairs of electrons, which are located on all four "sides" of carbon's electron dot structure. Each of these shared pairs was created by pairing one of carbon's unpaired electrons with an unpaired electron from chlorine.
Explanation:
Answer:
Initial concentration of HI is 5 mol/L.
The concentration of HI after
is 0.00345 mol/L.
Explanation:

Rate Law: ![k[HI]^2 ](https://tex.z-dn.net/?f=k%5BHI%5D%5E2%0A)
Rate constant of the reaction = k = 
Order of the reaction = 2
Initial rate of reaction = 
Initial concentration of HI =![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
![1.6\times 10^{-7} mol/L s=(6.4\times 10^{-9} L/mol s)[HI]^2](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E%7B-7%7D%20mol%2FL%20s%3D%286.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%29%5BHI%5D%5E2)
![[A_o]=5 mol/L](https://tex.z-dn.net/?f=%5BA_o%5D%3D5%20mol%2FL)
Final concentration of HI after t = [A]
t = 
Integrated rate law for second order kinetics is given by:
![\frac{1}{[A]}=kt+\frac{1}{[A_o]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
![\frac{1}{[A]}=6.4\times 10^{-9} L/mol s\times 4.53\times 10^{10} s+\frac{1}{[5 mol/L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D6.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%5Ctimes%204.53%5Ctimes%2010%5E%7B10%7D%20s%2B%5Cfrac%7B1%7D%7B%5B5%20mol%2FL%5D%7D)
![[A]=0.00345 mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D0.00345%20mol%2FL)
The concentration of HI after
is 0.00345 mol/L.