<span>This question is based on conservation of energy as the work done would lead to change in kinetice energy of car
change in KE = 1/2 mv(f)^2 - 1/2mv(i)^2 = 1/2m(v(f)^2-v(i)^2)
where v(f) and v(i) are the final and initial speeds
change in KE = 185kJ = 185,000J = 1/2 m((28m/s)^2-(23m/s)^2)
185,000=1/2 m(255m^2/s^2)
solving for m
m=1451kg</span>
Answer:
The ball took 0.4 seconds
Explanation:
» From the second newton's equation of motion.

- s is displacement, s = 80cm, s = 0.8 meters
- u is initial velocity, u = 0 [ from rest ]
- g is 10 m/s²

Answer:
A. Normal force is always perpendicular to the area of contact between an object and support.
Explanation:
Normal force is defined as the contact force. If there is no contact between the surfaces, they cannot applies a force which is normal on each other. For e.g, the surfaces of a cubical box and the cart cannot applies a force of normal on each other because of no contact.
If, when there is a contact between two surfaces they applies a normal force on each other, and this force is perpendicular to the each other . This normal force is necessary to prevent object to penetrating into other.
The energy of a light wave is calculated using the formula
E = hc/λ
h is the Planck's constant
c is the speed of light
λ is the wavelength
For the ir-c, the range is
<span>6.63 x 10^-34 (3x10^8) / 3000 = 6.63 x 10 ^-29 J
</span>6.63 x 10^-34 (3x10^8) / 1000000 = 1.99 x 10^-31 J
For the ir-a, the range is
6.63 x 10^-34 (3x10^8) / 700 = 2.84 x 10^-28 J
6.63 x 10^-34 (3x10^8) / 1400 = 1.42 x 10^-28 J