<h2>
Hello!</h2>
The answer is:
The new volume will be 1 L.

<h2>
Why?</h2>
To solve the problem, since we are given the volume and the first and the second pressure, to calculate the new volume, we need to assume that the temperature is constant.
To solve this problem, we need to use Boyle's Law. Boyle's Law establishes when the temperature is kept constant, the pressure and the volume will be proportional.
Boyle's Law equation is:

So, we are given the information:

Then, isolating the new volume and substituting into the equation, we have:



Hence, the new volume will be 1 L.

Have a nice day!
Endothermic<span> Reaction??? </span>
Answer:
No
Explanation:
Depending on the mass of the horse and the speed, velocity will change.
Answer:
Second element(Titanium); [Ar] 3d2 4s2
Third element(Vanadium):Ar 3d3 4s2
Explanation:
Given that there are only three d orbitals in universe L instead of five, the electronic configuration of the second and third elements in the first transition series will now look thus;
Second element(Titanium); [Ar] 3d2 4s2
Third transition element(Vanadium):Ar 3d3 4s2
Hence, the electronic configuration of Titanium and Vanadium in universe L is just the same as what it is on earth.
Answer:
2.53 L is the volume of H₂ needed
Explanation:
The reaction is: C₁₈H₃₀O₂ + 3H₂ → C₁₈H₃₆O₂
By the way we can say, that 1 mol of linolenic acid reacts with 3 moles of oxygen in order to produce, 1 mol of stearic acid.
By stoichiometry, ratio is 1:3
Let's convert the mass of the linolenic acid to moles:
10.5 g . 1 mol / 278.42 g = 0.0377 moles
We apply a rule of three:
1 mol of linolenic acid needs 3 moles of H₂ to react
Then, 0.0377 moles will react with (0.0377 . 3 )/1 = 0.113 moles of hydrogen
We apply the Ideal Gases Law to find out the volume (condition of measure are STP) → P . V = n . R . T → V = ( n . R .T ) / P
V = (0.113 mol . 0.082 L.atm/mol.K . 273.15K) 1 atm = 2.53 L