Answer:
Kc = 1.54e - 31 / 2.61e - 24
Explanation:
1 ) ; Kc = 1.54e - 31
2) ; Kc = 2.16e - 24
upon reversing ( 2 ) equation
Kc = 1/2.16e - 24
now adding 1 and reversed equation (2)
we get ,
Kc = 1.54e-31 × 1/2.61e - 24
equilibrium constant of equation (3) is -
Kc = 1.54e - 31 / 2.61e - 24
Answer:
3.62x10⁻⁷ = Kb
Explanation:
The acid equilibrium of a weak acid, HX, is:
HX + H₂O ⇄ X⁻ + H₃O⁺
Where Ka = [X⁻] [H₃O⁺] / [HX]
And basic equilibrium of the conjugate base, is:
X⁻ + H₂O ⇄ OH⁻ + HX
Where Kb = [OH⁻] [HX] / [X⁻]
To convert Ka to Kb we must use water equilibrium:
2H₂O ⇄ H₃O⁺ + OH⁻
Where Kw = 1x10⁻¹⁴ = [OH⁻] [H₃O⁺]
Thus, we can obtain:
Kw = Ka*Kb
Solving for Kb:
Kw / Ka = Kb
1x10⁻¹⁴ / 2.76x10⁻⁸ =
3.62x10⁻⁷ = Kb
<h2>
Answer: START (2)</h2>
Explanation:
AUG is a <u>START</u> codon. (2)
A start codon is the first codon translated by a ribosome. It usually produces an amino acid that initiates the producyion of a polypeptide chain.
Answer:
yes
Explanation:
it started moving North 5 m/s
CaCl2 and KCl are both salts which dissociate in water
when dissolved. Assuming that the dissolution of the two salts are 100 percent,
the half reactions are:
<span>CaCl2 ---> Ca2+ + 2 Cl-</span>
KCl ---> K+ + Cl-
Therefore the total Cl- ion concentration would be coming
from both salts. First, we calculate the Cl- from each salt by using stoichiometric
ratio:
Cl- from CaCl2 = (0.2 moles CaCl2/ L) (0.25 L) (2 moles
Cl / 1 mole CaCl2)
Cl- from CaCl2 = 0.1 moles
Cl- from KCl = (0.4 moles KCl/ L) (0.25 L) (1 mole Cl / 1
mole KCl)
Cl- from KCl = 0.1 moles
Therefore the final concentration of Cl- in the solution
mixture is:
Cl- = (0.1 moles + 0.1 moles) / (0.25 L + 0.25 L)
Cl- = 0.2 moles / 0.5 moles
<span>Cl- = 0.4 moles (ANSWER)</span>