Answer:
Mercury's natural state is where the atoms are close to each other but are still free to pass by each other. In which state(s) could mercury naturally exist?
Liquid is the answer
Explanation:
Answer:
a) about 20.4 meters high
b) about 4.08 seconds
Explanation:
Part a)
To find the maximum height the ball reaches under the action of gravity (g = 9.8 m/s^2) use the equation that connects change in velocity over time with acceleration.
In our case, the initial velocity of the ball as it leaves the hands of the person is Vi = 20 m/s, while thw final velocity of the ball as it reaches its maximum height is zero (0) m/s. Therefore we can solve for the time it takes the ball to reach the top:
Now we use this time in the expression for the distance covered (final position Xf minus initial position Xi) under acceleration:
Part b) Now we use the expression for distance covered under acceleration to find the time it takes for the ball to leave the person's hand and come back to it (notice that Xf-Xi in this case will be zero - same final and initial position)
To solve for "t" in this quadratic equation, we can factor it out as shown:
Therefore there are two possible solutions when each of the two factors equals zero:
1) t= 0 (which is not representative of our case) , and
2) the expression in parenthesis is zero:
<h2>
The magnitude of the force that acts on a charge of -7.9C at this spot is 2.21 x 10⁶ N.</h2>
Explanation:
Electric field is the ratio of force and charge.
Electric field, E = 280000 N/C
Charge, q = -7.9 C
We have
The magnitude of the force that acts on a charge of -7.9C at this spot is 2.21 x 10⁶ N.
Because it gives us the abilitity to find planets that have decent temperatures relative to earths temp so we can determine if the planet even has a possiblilty to sustain life hope this helps
Answer:An atom is the smallest unit of matter that retains all of the chemical properties of an ... facts remain true even when the atoms or molecules are part of a living thing. ... A gold atom gets its properties from the tiny subatomic particles it's made up of. ... Most atoms contain all three of these types of subatomic particles—protons, ...
Explanation: