Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.
Answer:
<em>Aim at the base of the fire and use short bursts until the fire is out.</em>
<em></em>
Explanation:
Fire extinguishers use CO2 (Carbondioxide) as the extinguishing agent. This is because CO2 is denser than air, and does not support combustion.
Aiming at the base of the fire causes the CO2 to fall on the base of the fire, where the source of the fire is, trapping it, and preventing it from further reacting with air in a combustion reaction. Also, the short burst creates a strong wind that forces the flame to blow out.
'C' is the only true statement on the list.
Step-up voltage transformers have a lower number of turns
in the primary than in the secondary winding.
Answer:
31.1 N
Explanation:
m = mass attached to string = 0.50 kg
r = radius of the vertical circle = 2.0 m
v = speed of the mass at the highest point = 12 m/s
T = force of the string on the mass attached.
At the highest point, force equation is given as

Inserting the values

T = 31.1 N