Answer:
λ = 1.4 × 10^(-7) m
Explanation:
We are given;
distance of eye piece from the source;D = 1.5 m
distance between the virtual sources;d = 7.5 × 10^(-4) m
To find the wavelength, we will use the formula for fringe width;
X = λD/d
Where X is fringe width, λ is wavelength, while d and D remain as before.
Now, fringe width = eye-piece distance moved transversely/number of fringes
Eye piece distance moved transversely = 1.88 cm = 1.88 × 10^(-2) m
Thus,
Fringe width = (1.88 × 10^(-2))/10 = 1.88 × 10^(-3) m
Thus;
1.88 × 10^(-3) = λ(1.5)/(7.5 × 10^(-4))
λ = [1.88 × 10^(-3) × (7.5 × 10^(-4))]/1.5
λ = 1.4 × 10^(-7) m
Answer:
Δω = -5.4 rad/s
αav = -3.6 rad/s²
Explanation:
<u>Given</u>:
Initial angular velocity = ωi = 2.70 rad/s
Final angular velocity = ωf = -2.70 rad/s (negative sign is
due to the movement in opposite direction)
Change in time period = Δt = 1.50 s
<u>Required</u>:
Change in angular velocity = Δω = ?
Average angular acceleration = αav = ?
<u>Solution</u>:
<u>Angular velocity (Δω):</u>
Δω = ωf - ωi
Δω = -2.70 - 2.70
Δω = -5.4 rad/s.
<u> Average angular acceleration (αav):</u>
αav = Δω/Δt
αav = -5.4/1.50
αav = -3.6 rad/s²
Since, the angular velocity is decreasing from 2.70 rad/s (in counter clockwise direction) to rest and then to -2.70 rad/s (in clockwise direction) so, the change in angular velocity is negative.
Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>