A) How fast was the brick moving after 4s?
Vf=?
Vi=0 (because it was dropped, not thrown)
A= -9.8m/s^2 (gravity)
t= 4s
Use the equation Vf=Vi+A(t)
Vf=0+(-9.8)(4)
Final answer: Vf= -39.2m/s
b) How far did the brick fall after 4s?
D=?
Vi=0
t=4s
A=-9.8m/s2
**You do have the final velocity, but it is best to avoid using numbers that you have calculated yourself.**
Use the equation: d=Vi(t)+0.5(A)(t)^2
d=(0)(4)+0.5(-9.8)(4)^2
d=(-4.9)(16)
d=-78.4m
Therefore, after 4s the brick fell 78.4m
<span>If Paul and Ivan has a speed of 5 meters/second in which their combined mass is 50 kg. To increase the bike's kinetic energy, Paul must increase its speed as well. Increasing his speed allows an increase in momentum of them running the bike. The kinetic energy equation is KE = 0.5mv</span>² where m is mass, v is speed and KE is kinetic energy.
Answer:
d = 13 miles
Explanation:
Lets say the position of court house is origin in this case
her office is located at 4 miles west and 4 miles south of court house
so here we have coordinate of the office with respect to court house is given as

now the position of her home is located at 1 miles east and 8 miles north of the court house
so the coordinates of her home is given as

now the change in the position is given as the distance between office and home



D is your answer hope this helps
"Constant velocity" is practically a definition for zero acceleration.