<span>Energy = h nu, where nu is the frequency
h = 6.63 x 10^-34 J-s, Planck's constant
So nu = E/h = 1 x 10^5 J /h = 0.15 x 10^29 / s
nu lambda = c, the speed of light.
lambda = wavelength = c / nu =3 x 10^8 / 0.15 x 10^29 = 20 x 10^-21 m.
this can possibly be a gamma ray. Gamma rays are very penetrating. It's both matter and an energy. They are electromagnetic radiation that results from a radioactive material.
</span><span>
</span>
To solve this problem we will apply the concept of rotational kinetic energy. Once this energy is found we will proceed to find the time from the definition of the power, which indicates the change of energy over time. Let's start with the kinetic energy of the rotating flywheel is

Here
I = moment of inertia
Angular velocity
Here we have that,


Replacing the value of the moment of inertia for this object we have,



The expression for average power is




Therefore the correct answer is 620s.
Answer:
A. <u>The water decreases the friction between the floor and the feet </u>
Explanation: Think about it like this, when your in the shower and water is on your skin, you can scrub it fluidly, but when the water dries in your towel, there is more friction when your rub your skin, this is because the molecules in water aren't as compact as solids, so anything acting against it, is most likely to disperse from it.
Answer:
v = √k/m x
Explanation:
We can solve this exercise using the energy conservation relationships
starting point. Fully compressed spring
Em₀ =
= ½ k x²
final point. Cart after leaving the spring
= K = ½ m v²
Em₀ = Em_{f}
½ k x² = ½ m v²
v = √k/m x
Mountains, valleys, plains, piles of rocks, and craters do.