Answer:
25.59 m/s²
Explanation:
Using the formula for the force of static friction:
--- (1)
where;
static friction force
coefficient of static friction
N = normal force
Also, recall that:
F = mass × acceleration
Similarly, N = mg
here, due to min. acceleration of the car;

From equation (1)

However, there is a need to balance the frictional force by using the force due to the car's acceleration between the quarter and the wall of the rocket.
Thus,




where;
and g = 9.8 m/s²


Answer:
Explanation:
Resistivity is given by
where A is cross-sectional area, R is resistance, L is the length and
is the reistivity. Substituting 0.0625 for R, 3.14 × 10-6 for A and 3.5 m for L then the resistivity is equivalent to
Answer:
197.76 m
Explanation:
r = Radius of the path = 20.6 km = 
= The angle subtended by moon = 
Distance traveled is given by



The distance traveled by the jet is 197.76 m
Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!