Answer:
Explanation:
Gravitational law states that, the force of attraction or repulsion between two masses is directly proportional to the product of the two masses and inversely proportional to the square of their distance apart.
So,
Let the masses be M1 and M2,
F ∝ M1 × M2
Let the distance apart be R
F ∝ 1 / R²
Combining the two equation
F ∝ M1•M2 / R²
G is the constant of proportional and it is called gravitational constant
F = G•M1•M2 / R²
So, to increase the gravitational force, the masses to the object must be increased and the distance apart must be reduced.
So, option c is correct
C. Both objects have large masses and are close together.
<span>Let's first off calculate the kinetic energy using the formula 1/2MV^2. Where the mass, M, is 0.6Kg. And speed, V, is 2. Hence we have 1/2 * 0.6 * 2^2 = 1.2J. Since kinetic energy is energy due to motion; hence at point B the rubber has a KE of 1.2J and not 7.5J. So I would say that only the Mass and speed is actually true; While it's kinetic energy is not true.</span>
Answer: An acid is a substance that donates a proton and produces a conjugate base.
Explanation:
According to Bronsted-Lowry theory, an acid is a substance that donates a proton and produces a conjugate base while a base is a molecule or ion which accepts the proton.
An example of Bronsted-Lowry acid and base is Ethanoic acid, CH3COOH and hydroxide ion, OH- respectively as shown in the reaction below
CH3COOH(aq) + OH-(aq) <---> CH3COO-(aq) + H2O(l)
Thus, ethanoic acid acts as an acid by donating a proton to the hydroxide ion which accepts it, thus producing ethanoate ion, CH3COO- as a conjugate base.
Answer:
Pressure of the gas = 12669 (Pa) and height of the oil is 1,24 meters
Explanation:
First, we can use the following sketch for an easy understanding, in the attached image we can see the two pressure gauges the one with mercury to the right and the other one with oil to left. We have all the information needed in the mercury pressure gauge, so we can determine the pressure inside the vessel because the fluid is a gas it will have the same pressure distributed inside the vessel (P1).
Since P1 = Pgas, we can use the same formula, but this time we need to determine the height of the column of oil in the pressure gauge.
The result is that the height of the oil column is higher than the height of the one that uses mercury, this is due to the higher density of mercury compared to oil.
Note: the information given in the units of the fluids is not correct because the density is always expressed in units of (mass /volume)
Answer:
The magnitude of Force is 8.58×10⁵N and direction is upwards
Explanation:
The work beam does on the pile driver is given by
W=(FCos180°)Δx= -F(0.088m)
From work energy theorem

Choosing y=0 at the the level where the driver first contacts the beam and vi=0 at yi=+3.40m and comes to rest again vf=0 at yf= -0.088m
So

The magnitude of Force is 8.58×10⁵N and direction is upwards