Answer:
High
Explanation:
When the unknown compound contains an impurity that is insoluble in cyclohexane, the solute will not dissolve in the solvent (cyclohexane) completely. ∆T of the solution would be smaller than it is supposed to be, when compared to a compound without such insoluble impurity. Molecular weight determination won't be accurate because the molecular weight obtained will be higher as a result of the fact that the mass of the solute would include the actual solute that is changing the temperature and the excess mass of the impurity.
Hey there!
In order to solve for the percentage of water in the compound, you will first need to find its total molar mass. You can do this by adding up the molar masses of each individual element in the compound. Then, you will divide the mass that you find of the water molecules by the total mass to get the percentage.
→ Na₂CO₃ ×<span> 10 H</span>₂<span>O
</span>→ Na₂ = 22.9898 × 2 = 45.9796
→ C = 12.0107
→ O₃ = 15.999 × 3 = 47.997
→ 10 H₂O = 18.015 × 10 = 180.15
Now, just add all of those numbers up for the total molar mass.
→ 45.9796 + 12.0107 + 47.997 + 180.15 = <span>286.1373
</span>
The last step is to divide the molar mass of the 10 water molecules by the total mass.
→ 180.15 ÷ 286.1373 = <span>0.62959 </span>≈ 0.63
Your answer will be about 63%.
Hope this helped you out! :-)
Lipids that are liquid at room temperature are known as oils.
The correct answer is:
d) No, it is not feasible. three metallic ions cannot provide the exact number of electrons that one sulfur needs for the ionic bond.
Because Sulfur is divalent so it need to gain 2 electrons from metal so if we have 3 metals they can't provide only two electrons only.
Two types of stoichiometry are; molar mass and coefficients from balanced equation.