The structural formula of <span>s-allylcysteine is shown in the picture (top figure). To create its Lewis structure, draw all its bonds between elements. Each single bond contains two electrons. There is an octet rule that must be obeyed by most elements. Each element should be surrounded with 8 electrons. The hydrogen is exempted of this rule. So, there are 4 lone pairs for the S atom, 1 lone pair for the N atom, and 2 lone pairs each for the 2 O atoms.</span>
Answer:
2s2 2p5
Rb < Sr< Sn< Te<I
Explanation:
Electron affinity is the ability of an atom to accept electrons to form negative ions.
Electron affinity is a periodic trend that decreases down the group but increases across the period.
This accounts for the trends observed in the answer. The atom having the electronic configuration, 2s2 2p5 must be a halogen and it exhibits the highest value of electron affinity.
Also, since electron affinity increases across the period, the electron affinities of the elements increases. Therefore, the arrangement of atoms as shown in the answer depends on increasing electron affinity.
<span> The atomic number increases by one and the element becomes a different element. </span>
Explanation:
First Reaction;
Ca + ZnCl2 --> CaCl2 + Zn
Oxidized Reactant: Ca. There is increase in oxidation number from 0 to +2
Reduced Reactant: Zn. There is decrease in oxidation number form +2 to 0
Second Reaction:
FeI2 + Mg --> Fe + MgI2
Oxidized Reactant: Mg. There is increase in oxidation number from 0 to +2
Reduced Reactant: Fe. There is decrease in oxidation number form +2 to 0
Third Reaction;
Mg + 2AgNO3 --> Mg(NO3)2 + Ag
Oxidized Reactant: Mg. There is increase in oxidation number from 0 to +2
Reduced Reactant: Ag. There is decrease in oxidation number form +1 to 0