Speed of car A is given as

now we need to convert it into SI units
1 miles = 1609 m
1 hour = 3600 s
now we have

now its distance from Bambi is given as

time taken by it to hit the Bambi



Now other car is moving at speed 50 mph
so its speed in SI unit will be


now its distance from Bambi is given as

as we know that 1 feet = 0.3048 m

now the time to hit the other car is


So Car B will hit the Bambi first
Answer:
Dark matter does not affect our view, humans can see through them.
Explanation:
They do not affect our view because we can see right through the (weakly interacting) dark matter, as they do not interact or interfere with electromagnetic force.
Dark matter are often invisible substances and are difficult to spot because they don't absorb or reflect light.
Answer:
(a) 4.21 m/s
(b) 24.9 N
Explanation:
(a) Draw a free body diagram of the object when it is at the bottom of the circle. There are two forces on the object: tension force T pulling up and weight force mg pulling down.
Sum the forces in the radial (+y) direction:
∑F = ma
T − mg = m v² / r
v = √(r (T − mg) / m)
v = √(0.676 m (54.7 N − 1.52 kg × 9.8 m/s²) / 1.52 kg)
v = 4.21 m/s
(b) Draw a free body diagram of the object when it is at the top of the circle. There are two forces on the object: tension force T pulling down and weight force mg pulling down.
Sum the forces in the radial (-y) direction:
∑F = ma
T + mg = m v² / r
T = m v² / r − mg
T = (1.52 kg) (4.21 m/s)² / (0.676 m) − (1.52 kg) (9.8 m/s²)
T = 24.9 N
You've got a 69.0-kg wooden crate on a wooden floor. The box can withstand a force of up to 338N in a horizontal direction without being moved. Following this, the wooden creates moving stats.
In order to calculate the friction coefficient, divide the force pushing two objects together by the force acting between them. friction coefficient might be 0 or one. They can be split into two categories: friction coefficient that is static. Kinetic friction coefficient (also known as sliding coefficient of friction).
the acceleration brought on by the gravitational pull of large masses generally, gravitational , often known as the acceleration brought on by the Earth's gravitational pull and centrifugal force,
F= friction coefficient *M*g
F= 0.5*69*9.8
F=338N
Learn more about gravitational here
brainly.com/question/3009841
#SPJ4
Answer:
Let me look up a couple of things regarding this question.
Explanation:
Then I will get back to you.