The probability is 56/100, or 14/25 = 0.56.
These events are not mutually exclusive, meaning they can happen at the same time. This means we use
P(A or B) = P(A) + P(B) - P(A and B)
P(carpool or full time) = P(carpool) + P(full time) - P(carpool & full time)
There are 6+9=15 people out of 100 that carpool.
There are 7+4+30+6=47 people out of 100 that work full time.
There are 6 people out of 100 that carpool and work full time.
This gives us
15/100 + 47/100 - 6/100 = 56/100
.83 is greater .038 is in the thousands place and .83 is in the hundreds hope this Helped :D
the parabola has maximum at 9, meaning is a vertical parabola and it opens downwards.
it has a symmetry at x = -5, namely its vertex's x-coordinate is -5.
check the picture below.
so then, we can pretty much tell its vertex is at (-5 , 9), and we also know it passes through (-7, 1)
![\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} y=a(x- h)^2+ k\qquad \leftarrow \textit{using this one}\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{}{ h},\stackrel{}{ k}) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-5\\ k=9 \end{cases}\implies y=a[x-(-5)]^2+9\implies y=a(x+5)^2+9](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Bparabola%20vertex%20form%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20y%3Da%28x-%20h%29%5E2%2B%20k%5Cqquad%20%5Cleftarrow%20%5Ctextit%7Busing%20this%20one%7D%5C%5C%5C%5C%20x%3Da%28y-%20k%29%5E2%2B%20h%20%5Cend%7Barray%7D%20%5Cqquad%5Cqquad%20vertex~~%28%5Cstackrel%7B%7D%7B%20h%7D%2C%5Cstackrel%7B%7D%7B%20k%7D%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-5%5C%5C%20k%3D9%20%5Cend%7Bcases%7D%5Cimplies%20y%3Da%5Bx-%28-5%29%5D%5E2%2B9%5Cimplies%20y%3Da%28x%2B5%29%5E2%2B9)
![\bf \textit{we also know that } \begin{cases} x=-7\\ y=1 \end{cases}\implies 1=a(-7+5)^2+9 \\\\\\ -8=a(-2)^2\implies -8=4a\implies \cfrac{-8}{4}=a\implies -2=a \\\\[-0.35em] ~\dotfill\\\\ ~\hfill y=-2(x+5)^2+9~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bwe%20also%20know%20that%20%7D%20%5Cbegin%7Bcases%7D%20x%3D-7%5C%5C%20y%3D1%20%5Cend%7Bcases%7D%5Cimplies%201%3Da%28-7%2B5%29%5E2%2B9%20%5C%5C%5C%5C%5C%5C%20-8%3Da%28-2%29%5E2%5Cimplies%20-8%3D4a%5Cimplies%20%5Ccfrac%7B-8%7D%7B4%7D%3Da%5Cimplies%20-2%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20y%3D-2%28x%2B5%29%5E2%2B9~%5Chfill)
14/20=0.7 or 70% are soft-centred. If we take two candies we have three possibilities associated with probabilities:
Both soft-centred: 0.7²=0.49 or 49%
Both hard-centred: 0.3²=0.09 or 9%
One of each: 2×0.3×0.7=0.42 or 42%. 49+9+42=100%. So these are all the possible outcomes.
10x + 2y - 6 = 0
Multiply 5x + y - 3 = 0 by 2
2(5x + y - 3 = 0) = 10x + 2y - 6 = 0