Answer:

Explanation:
The volume flow rate of a fluid in a pipe is given by:

where
A is the cross-sectional area of the pipe
v is the speed of the fluid
In this problem, at the initial point we have
v = 0.84 m/s is the speed of the water
r = 0.21 m is the radius of the pipe, so the cross-sectional area is

So, the volume flow rate is

The potential energy is stored in the chemical bonds of the food. When those bonds break up during the metabolic processes, the energy is released. After that, that energy is stored in the Adenosine Triphosphate bonds aka ATP. The simplest way to think is to think of food as the tightly bound atoms. When the chemical bonds between those atoms break, the stored energy in that food is released.
Correct answer choice is :
B) Able to travel through a vacuum.
Explanation:
Electromagnetic waves are applied to carry long/short/FM wavelength radio waves, and TV/telephone/wireless signals or services. They are also effective for transferring energy in the form of microwaves, infrared radiation, visible light, ultraviolet light, X-rays, and gamma rays. Electromagnetic waves change from mechanical waves in that they do not need a medium to generate. This means that electromagnetic waves can move not only in the air and solid matters but also in the void of space.
Read more on Brainly.com - brainly.com/question/1697984#readmore
To solve this problem, we use the equation:
<span>d = (v^2 - v0^2) /
2a</span>
where,
d = distance of collapse
v0 = initial velocity = 101 km / h = 28.06 m / s
v = final velocity = 0
a = acceleration = - 300 m / s^2
d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)
<span>d = 1.31 m</span>
Answer:
18.63 N
Explanation:
Assuming that the sum of torques are equal
Στ = Iα
First wheel
Στ = 5 * 0.51 = 3 * (0.51)² * α
On making α subject of formula, we have
α = 2.55 / 0.7803
α = 3.27
If we make the α of each one equal to each other so that
5 / (3 * 0.51) = F2 / (3 * 1.9)
solve for F2 by making F2 the subject of the formula, we have
F2 = (3 * 1.9 * 5) / (3 * 0.51)
F2 = 28.5 / 1.53
F2 = 18.63 N
Therefore, the force F2 has to 18.63 N in order to impart the same angular acceleration to each wheel.