Oxygen is needed to carry out a lot of biochemical processes in the body. If the amount of oxygen available to the blood decreases significantly a lot of things will go wrong in the body. For instance, lack of adequate oxygen will lead to the death of neurons which will eventually leads to brain cells death and irreparable brain damage. Oxygen is also needed for cellular respiration, without respiration, there will not be oxygen for carrying out various cellular activities and this will result into death. Oxygen deprivation will also leads to difficulty in breathing and other associated problems.
Answer:
A. is insufficient to overcome intermolecular forces
Explanation:
Just took the review
Answer:
bowl 5, bowl 3, bowl 4, bowl 1, bowl 2
Explanation:
<h3>
Answer:</h3>
23.459 g NaNO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN] H₂SO₄ + 2NaNO₂ → 2HNO₂ + Na₂SO₄
[Given] 24.14714 g Na₂SO₄
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol Na₂SO₄ = 2 mol NaNO₂
Molar Mass of Na - 22.99 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of Na₂SO₄ - 2(22.99) + 32.07 + 4(16.00) = 142.05 g/mol
Molar Mass of NaNO₂ - 22.99 + 14.01 + 2(16.00) = 69.00 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We need 5 sig figs (instructed).</em>
23.4587 g NaNO₂ ≈ 23.459 g NaNO₂
Answer : The enthalpy change for the process is 52.5 kJ/mole.
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the solution
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm_2%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the solution
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water or solution = 
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(12.1J/^oC\times 6.1^oC)+(100.0g\times 4.18J/g^oC\times 6.1^oC)]](https://tex.z-dn.net/?f=q%3D%5B%2812.1J%2F%5EoC%5Ctimes%206.1%5EoC%29%2B%28100.0g%5Ctimes%204.18J%2Fg%5EoC%5Ctimes%206.1%5EoC%29%5D)

Now we have to calculate the enthalpy change for the process.

where,
= enthalpy change = ?
q = heat released = 2626.61 J
n = number of moles of copper sulfate used = 

Therefore, the enthalpy change for the process is 52.5 kJ/mole.