Answer:
17.0 g of hask2 lahhwle 11c u2b8ss
Answer:
0.73L
Explanation:
The following data were obtained from the question :
V1 = 0.65 L
P1 = 3.4 atm
T1 = 19°C = 19 + 273 = 292K
V2 =?
P2 = 3.2 atm
T2 = 36°C = 36 + 273 = 309K
The bubble's volume near the top can be obtain as follows:
P1V1 /T1 = P2V2 /T2
3.4 x 0.65/292 = 3.2 x V2 /309
Cross multiply to express in linear form as shown below:
292 x 3.2 x V2 = 3.4 x 0.65 x 309
Divide both side by 292 x 3.2
V2 = (3.4 x 0.65 x 309) /(292 x 3.2)
V2 = 0.73L
Therefore, the bubble's volume near the top is 0.73L
Answer:
-26.125 kj
Explanation:
Given data:
Mass of water = 250.0 g
Initial temperature = 30.0°C
Final temperature = 5.0°C
Amount of energy lost = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 5.0°C - 30.0°C
ΔT = -25°C
Specific heat of water is 4.18 j/g.°C
Now we will put the values in formula.
Q = m.c. ΔT
Q = 250.0 g × 4.18 j/g.°C × -25°C
Q = -26125 j
J to kJ
-26125 j ×1 kj /1000 j
-26.125 kj
Answer:
The first 5 are exothermic reaction because heat is in product means heat is evolved or given out.
And last no reaction shows that heat is required so last reaction is endothermic reaction.
Explanation:
And heat is evolved in exothermic reaction and heat is absorbed in endo thermic reaction
Answer:
12 moles of CO₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
CO₂ + H₂O —> H₂CO₃
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Finally, we shall determine the number of moles of CO₂ that will dissolve in water to produce 12 moles of H₂CO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Therefore, 12 moles of CO₂ will also dissolve in water to produce 12 moles of H₂CO₃.
Thus, 12 moles of CO₂ is required.