Answer:
c
Explanation:
just trying to follow basic grammar.
Answer:
a) -2.516 × 10⁻⁴ V
b) -1.33 × 10⁻³ V
Explanation:
The electric field inside the sphere can be expressed as:

The potential at a distance can be represented as:
V(r) - V(0) = 
V(r) - V(0) =
₀
V(r) =
₀
Given that:
q = +3.83 fc = 3.83 × 10⁻¹⁵ C
r = 0.56 cm
= 0.56 × 10⁻² m
R = 1.29 cm
= 1.29 × 10⁻² m
E₀ = 8.85 × 10⁻¹² F/m
Substituting our values; we have:

= -2.15 × 10⁻⁴ V
The difference between the radial distance and center can be expressed as:
V(r) - V(0) = 
V(r) - V(0) = ![[\frac{qr^2}{8 \pi E_0R^3 }]^R](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bqr%5E2%7D%7B8%20%5Cpi%20E_0R%5E3%20%7D%5D%5ER)
V(r) = 
V(r) = 
V(r) 
V(r) = -0.00133
V(r) = - 1.33 × 10⁻³ V
Answer:
bb kettle
Explanation:
it transfres electricsl to kinetic
Transform boundary
is the answer from stemscopes
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %