Newton's Laws<span>. </span>Kepler's Laws<span> are wonderful as a description of the </span>motions<span> of the </span>planets<span>. However, they provide no explanation of why the </span>planets<span> move in this way. Moreover, </span>Kepler's<span> Third </span>Law<span> only works for </span>planets<span> around the Sun and does not apply to the Moon's orbit around the Earth or the moons of Jupiter.
!!hope this helpful to you!!
please mark this a !!brainliest answer!!</span>
Answer
(C).
When there is an angle between the two directions, the cosine of the angle must be considered.
Step by step Solution
The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.
The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.
The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is
.
Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the
meaning that there is no work done in the direction perpendicular to the motion.
The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is 
Given
Three 7 ohm resistor are in series.
The battery is V=10V
To find
The equivalent resistance
Explanation
When the resistance are in series then the resistance are added to find its equivalent.
Thus the equivalent resistance is:

Conclusion
The equivalent resistance is 21 ohm